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A B S T R A C T
Objectives: To identify the incremental costs and consequences of
stratified national breast screening programs (stratified NBSPs) and
drivers of relative cost-effectiveness. Methods: A decision-analytic
model (discrete event simulation) was conceptualized to represent
four stratified NBSPs (risk 1, risk 2, masking [supplemental screening
for women with higher breast density], and masking and risk 1)
compared with the current UK NBSP and no screening. The model
assumed a lifetime horizon, the health service perspective to identify
costs (£, 2015), and measured consequences in quality-adjusted life-
years (QALYs). Multiple data sources were used: systematic reviews of
effectiveness and utility, published studies reporting costs, and cohort
studies embedded in existing NBSPs. Model parameter uncertainty
was assessed using probabilistic sensitivity analysis and one-way
sensitivity analysis. Results: The base-case analysis, supported by
probabilistic sensitivity analysis, suggested that the risk stratified
NBSPs (risk 1 and risk-2) were relatively cost-effective when compared
with the current UK NBSP, with incremental cost-effectiveness ratios
of £16,689 per QALY and £23,924 per QALY, respectively. Stratified
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NBSP including masking approaches (supplemental screening for
women with higher breast density) was not a cost-effective alter-
native, with incremental cost-effectiveness ratios of £212,947 per
QALY (masking) and £75,254 per QALY (risk 1 and masking). When
compared with no screening, all stratified NBSPs could be considered
cost-effective. Key drivers of cost-effectiveness were discount
rate, natural history model parameters, mammographic sensitivity,
and biopsy rates for recalled cases. A key assumption was that the
risk model used in the stratification process was perfectly calibrated
to the population. Conclusions: This early model-based cost-
effectiveness analysis provides indicative evidence for decision
makers to understand the key drivers of costs and QALYs for
exemplar stratified NBSP.
Keywords: breast cancer, cost-effectiveness analysis, discrete event
simulation, screening.
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Introduction

National breast screening programs (NBSPs) have emerged as
important public health interventions that aim to reduce deaths
from breast cancer through early detection [1]. NBSPs in different
jurisdictions differ in terms of the age at which screening is first
offered to women in the population (start of NBSP), the interval
between screens (screening interval), and the age at which
screening is stopped. In the United Kingdom, the current NBSP
is targeted at women within the first 3 years of their 50th
birthday until the age of 70 years with a 3-yearly screening
interval [2]. In some areas of the United Kingdom, the age range
has been extended to women aged 47 to 49 years and 71 to 73
years as part of an age extension trial [3]. The current UK NBSP
is a standard program with the same screening modality (mam-
mography) offered at the same screening interval to all women
regardless of their risk of developing breast cancer.

A new concept called “stratified screening,” also known as
personalized screening, is being considered to replace the exist-
ing standard, or “one-size-fits-all” UK NBSP, with the aim of
improving the predictive value of cancer detection and, therefore,
the relative cost-effectiveness of the program [4]. Risks of breast
cancer may vary across a wide range because of familial risk,
mammographic density, and modifiable risk factors. The poten-
tial for improved clinical and relative cost-effectiveness is
achieved by modifying the screening protocol depending on an
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Table 1 – Key design criteria.

Decision problem What are the key drivers of the incremental
costs and benefits of example stratified
breast screening program compared with
the current NBSP?

Interventions Risk 1: a risk-based stratification defined by
the risk algorithm used in a published
study [5] enhanced with density and
texture measures following the method
of Brentnall et al. [44]. Three strata (with
associated screening intervals) were
defined by 10-y risks of breast cancer of
1) o3.5% (3-yearly), 2) 3.5%–8% (2-yearly),
and 3) 48% (annually)

Risk 2: a risk-based stratification defined by
the same algorithm as risk 1 but with
strata defined by dividing the population
into thirds on the basis of 10-y risk
(tertiles): 1) the lowest risk tertile
(3-yearly), 2) the middle tertile (2-yearly),
and 3) the highest risk tertile (annually)

Masking (covering up of tumors in
mammograms by dense breast tissue):
current screening approach with
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individual’s characteristics such as breast cancer risk factors or
the performance of the screening modality for that individual.
The introduction of, or any modification to, an NBSP has an
opportunity cost. It is therefore important for decision makers
deciding how to allocate finite budgets for screening programs
to understand the added value of any additions or changes to
an NBSP.

A substantial, but heterogeneous, economic evidence base
has been developed to quantify the potential added value of
an NBSP. A systematic review, conducted in 2014, identified 71
economic evaluations of relevance to breast screening in a
general population of women. Of these, 52 were model-based
evaluations [5]. There were three studies identified that con-
ducted model-based analyses of a stratified screening strategy.
Two of these studies were based in the United States [6,7]
with no relevance to health care systems outside that setting.
One study was UK-based [8] but provided no detail on the study
perspective, time horizon, nature, and source of model inputs or
method of analysis, which meant it is not possible to critique the
relevance and quality of the results. Given the lack of an existing
evidence base, it was timely to design an early model-based
cost-effectiveness analysis (CEA) to identify the potential impact
of introducing stratified NBSP in the UK setting and key drivers
of the relative cost-effectiveness of different types of stratified
NBSPs.
supplemental ultrasound offered to
women with high breast density, defined
using VDG3 and VDG4 [45]. High risk was
defined as greater than an 8% 10-y risk of
breast cancer [46]. Women with both
high breast density and high risk of
breast cancer were offered supplemental
magnetic resonance imaging instead of
ultrasound

Risk 1 with masking: the risk 1 stratification
approach together with the strategy
described in the masking approach

Comparators Current UK NBSP: women between 50 and
70 y with screening every 3 y using
mammography

No screening: no use of mammography in
the population for screening purposes;
all cancers would present with clinical
signs or symptoms

Model type Discrete event simulation programmed in R
Population Women eligible for an NBSP
Setting and

perspective
National health care service
Costs to individual women were excluded

from the analysis
Time horizon Lifetime
Costs National currency (£) at 2014 prices
Benefits Life-years and QALYs
Discounting 3.5% for both costs and benefits (base case)

3.5% for costs and 1.5% for benefits
(sensitivity analysis)

Cost-
effectiveness
threshold

NICE UK-recommended threshold of
£20,000 per QALY gained

NBSP, national breast screening program; NICE, National Institute
for Health and Care Excellence; QALY, quality-adjusted life-year;
VDG, Volpara Density Group.
Methods

An early model-based CEA was developed to address the key
criteria as presented in Table 1 and reported in line with published
criteria [9]. The concept of an early model-based economic evalua-
tion is used in keeping with the definition offered by Annemans
et al. [10]. Using an early model-based economic evaluation is in
keeping with the recommendation by Sculpher et al. [11] to use an
iterative approach to developing economic evidence to inform the
introduction of new health care interventions.

Interventions

Four potential approaches (hereafter called risk 1, risk 2, masking,
and masking and risk 1) to stratified NBSP (see Table 1) were
developed as part of a European collaborative project called
Adapting Breast Cancer Screening Strategy Using Personalised
Risk Estimation (ASSURE) [4].

Comparators

The identified relevant comparator was the current UK NBSP (see
Table 1). “No screening” was also identified as a comparator of
interest. A pragmatic approach was taken to define no screening
(see Table 1).

Model Conceptualization and Structure

A systematic review of economic evaluations of breast screening
programs identified no relevant existing models that could be
used without extensive modification [5]. A de novo model
structure was conceptualized, in line with published recom-
mendations [12], and developed with input from key clinical
members in the ASSURE team (n ¼ 5) and external experts
(n ¼ 15). The conceptualization process identified that the model
required three components to represent: the stratification
approach, breast cancer natural history with screening, and
the diagnosis and treatment process after a cancer detected
by screening. A discrete event simulation (DES) model was used
to represent these three components. Appendix 1 in
Supplemental Materials found at http://dx.doi.org/10.1016/j.jval.
2017.04.012 shows the model structures and descriptions in
detail. The model codes, created in R statistical package
(R Foundation for Statistical Computing, Vienna, Austria), are
available on request.
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Table 2 – List of parameters and definitions for equations.

Equation Parameter Definition

Equation 1 S Xð Þ, Sensitivity of mammography to detect a tumor of size X (maximum diameter in millimeters)
β1 Sensitivity of mammography; β1 determined how rapidly sensitivity changes with tumor size to approach

the asymptotes of 0 and 1
β2 Sensitivity of mammography; β2 places the location of the sensitivity curve in relation to tumor size,

where X�β2¼0 and sensitivity is equal to 0.5
Equation 2 Senaverage Sensitivity of mammography without density information

SenX Sensitivity of mammography given a tumor size X
SenX,VDG Size and VDG-specific sensitivity of mammography

Equation 3 Senaverage Sensitivity of mammography without density information

SenX Sensitivity of mammography given a tumor size X
SenX,VDG Size and VDG-specific sensitivity of mammography

Equation 4 ORMRI The odds ratio for detecting cancer with MRI and mammography compared with mammography alone
c:d:r:mammo,MRI The cancer detection rate for the combined methods

c:d:r:mammo The cancer detection rate for mammography alone
Equation 5 SenX,VDG,MRI The sensitivity of screening with mammography and MRI for a tumor of size X in women classified as in a

given VDG
SenX,VDG The sensitivity for the same tumor for mammography alone

Equation 6 Vmax The assumed maximum tumor volume, equal to a sphere of 128-mm diameter
Vcell The assumed initial volume of an incident cancer, equal to a sphere of 0.025-mm diameter

Equation 7 Vmax The assumed maximum tumor volume, equal to a sphere of 128-mm diameter
Vcell The assumed initial volume of an incident cancer, equal to a sphere of 0.025-mm diameter

Equation 8 ki The individual growth rate parameter following a lognormal distribution ln Nðα1,α2Þ; individual growth
rates are drawn from a lognormal distribution with mean α1 and SD α2

Vmax The assumed maximum tumor volume, equal to a sphere of 128-mm diameter
Vcell The assumed initial volume of an incident cancer, equal to a sphere of 0.025-mm diameter

Equation 10 Tm Survival time (age)
λ Scale parameter (¼0.897)
υ Shape parameter (¼86.74)
U Uniform(0,1) random draw

Equation 11 Tc The survival time in years
γ The exponential survival function parameter, estimated in the parametric survival analysis, for a specific

NPI group
Equation 12 Td The time to simulated clinical detection

Tm The previously calculated all-cause survival time
Tc The post–cancer diagnosis all-cause survival time

MRI, magnetic resonance imaging; NPI, Nottingham Prognostic Indicator; VDG, Volpara Density Group.
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Model Input Parameters

The input parameters, with key assumptions, are now described
for each of the three model components together with the values
used for resource use costs and outcomes, quantified using
survival and quality-adjusted life-years (QALYs).

The Stratification Process
Performance input parameters were required for each screening
modality: mammography, mammography adjusted for masking,
and ultrasonography (US) and magnetic resonance imaging
(MRI).

Mammography. The sensitivity of mammography was defined
as the conditional probability of a tumor being detected at a
mammography event given the size of the tumor. This model
took account of latent cancers that exist at a screening round,
which were not detected, and subsequently do not present in the
following interval. To obtain an estimate of screening sensitivity
consistent with the presence of latent cancers in the model, the
screening sensitivity as defined in Weedon-Fekjaer et al. [13] was
used. Screening sensitivity was estimated jointly with the natural
history parameters to be consistent with the presence of latent
cancers that were simulated in this model. Sensitivity of
mammography conditional on tumor size was parameterized as
shown in Equation 1:

S Xð Þ¼
exp X�β2

β1

� �

1 þ exp X�β2
β1

� � : ð1Þ

Table 2 presents the definitions for the parameters used in
Equations 1 to 12.
Mammography and Adjustment for Masking. Masking was
defined as the case in which a cancer was present but not
detected at screening because of the view of the cancer being
obscured in the images by other tissues [14]. In mammography,
masking was expected to occur more frequently when there was
high breast density or if particular textural patterns of the breast
tissue were present. To quantify masking due to breast density it
was necessary to rely on a comparison of screen-detected and
interval breast cancer rates within different density groups. From
such a comparison it was possible to estimate the sensitivity of
screening mammography for each group by the method of
counting the screen-detected cancers as true positives and the
interval cancers as false negatives.



Table 3 – Input parameters for base-case analysis.

Parameter Value Source

Breast cancer risk factors Varied [5,45] (random sample from
individual patient data)

Summary statistics risk factors, mean � SD
Age (y) 48.93 � 1.09 [45]
10-y risk (%) 3.04 � 1.43 [45]
Lifetime risk (%) 13.21 � 1.43 [45]
Density (Volpara) (%) 8.02 � 5.26 [45]

Cancer incidence parameters
Conditional on breast cancer in lifetime,

probability that it originates at age t
See Appendix 2 in Supplemental Materials found at

http://dx.doi.org/10.1016/j.jval.2017.04.012
[19]

Cancer growth parameters
Tumor starting size (diameter) 0.25 mm [13]
Maximum tumor size 128 mm [13]
Growth rate mean (lognormal) α1 1.07 [13]
Growth rate SD α2 1.31 [13]

All-cause mortality
Weibull shape 8.97 Fit to life table for UK

population [30]
Weibull scale 86.74 Fit to life table for UK

population [30]
Mammography
Sensitivity by tumor size modeled as

logistic-type function
[13]

β1: sets increase with size 1.47
β2: sets sensitivity relative to size 6.51

Maximum sensitivity 0.95% [13]
Sensitivity by VDG, used to calculate relative sensitivity given tumor size
Sensitivity VDG1 85.0% [48]
Sensitivity VDG2 77.6% [48]
Sensitivity VDG3 69.0% [48]
Sensitivity VDG4 58.6% [48]
Recall rate 4.0 per 100 examinations [16]
False-positive biopsy proportion 2.4% [16]
Proportion of screen-detected cancers that

are DCIS
20.3% [26]

Clinically detected (interval cancers)
Cancer size at clinical detection, mean 6.5 doublings (22.62 mm) [20]
Cancer size at clinical detection, SD 0.535 doublings [20]

Survival after breast cancer diagnosis
γ NPI 1 �5.413 [31]
γ NPI 2 �4.023 [31]
γ NPI 3 �2.465 [31]
γ Advanced cancer, age o50 y �0.527 [29]
γ Advanced cancer, age 50–69 y �0.537 [29]
γ Advanced cancer, age Z70 y �0.849 [29]

US cancer detection
VDG3/4 incremental cancers detected with

supplemental US
3 per 1000 examinations [17]

False-positive (recall) rate, US 98 per 1000 examinations [17]
Biopsy rate, US 2.4% Assumed same as

mammography
Proportion cancers detected by

supplemental US that are DCIS
21% Assumed same as

mammography
MRI cancer detection
VDG3/4 incremental cancers detected with

supplemental US
5 per 1000 examinations Vreemann et al. (personal

communication, 2015)
False-positive (recall) rate, MRI 41.15 per 1000 examinations Vreemann et al. (personal

communication, 2015)
Biopsy rate, MRI 3.03% Vreemann et al. (personal

communication, 2015)
Proportion of cancers detected by

supplemental MRI that are DCIS
14.3% Vreemann et al. (personal

communication, 2015)
continued on next page
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Table 3 – continued

Parameter Value Source

Costs
Mammography £54 [15]
Follow-up, mean £95 [15]
Biopsy, mean £160 [49]
NPI 1 treatment, mean £11,630 [15]
NPI 2 treatment, mean £12,978 [15]
NPI 3 treatment, mean £15,405 [15]
Advanced cancer, mean £23,449 [13]
Screening ABUS £80 Expert opinion
Screening HHUS £80 Expert opinion
Screening MRI £220 [49]
Stratification process £10.57 [5]; expert opinion

Utility
Early breast cancer, first year 0.696 [36]
Early breast cancer, subsequent years 0.779 [36]
Advanced breast cancer, first year 0.685 [36]
Advanced breast cancer, subsequent years 0.685 [36]

ABUS, automated equipment; DCIS, ductal carcinoma in situ; HHUS, hand-hand equipment; MRI, magnetic resonance imaging; NPI,
Nottingham Prognostic Index; US, ultrasonography; VDG, Volpara Density Group.
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To calculate the Volpara Density Group (VDG)–specific sensi-
tivity (SenVDG;see Equation 2 and Table 2) of mammography for a
tumor of a given size, the ratio of the odds of a true positive result
for that VDG compared with the population average odds (ORVDG;
see Equation 3 and Table 2) was combined with the odds of a true
positive result given the tumor size alone. The resultant value for
odds was then converted back to a probability to give VDG-
specific and tumor size–specific sensitivity. For simplicity, it was
assumed that the relative sensitivities (i.e., odds ratios) between
VDGs were equal across all tumor sizes.

ORVDG¼
SenVDG= 1�SenVDGð Þ

Senaverage= 1�Senaverage
� � , ð2Þ

SenX,VDG¼
SenX= 1�Senxð Þ �ORVDG

1þ SenX= 1�Senxð Þ �ORVDG
� � : ð3Þ

Mammography Recall Rate (True Positives and False Positives).
The rate of recalls that result in biopsy (true positives) was taken
from a previous economic evaluation [15]. The recall rate, for
women in whom no cancer is present (false positives), was
calculated by identifying the overall recall rate for the UK NBSP
from published program statistics 2011 to 2012 [16]. About 20% of
recalls were cited to be true positives, which indicated that the
estimated recall rate, excluding true positives, was 3.2%.

US and MRI. Two supplemental screening modalities were
relevant. US supplemental screening, delivered using either
hand-hand equipment or automated equipment, was proposed
for women with high breast density (VDG3 and VDG4). For
women at high risk who also have high breast density, MRI was
used as a supplemental screening technology.

It was necessary to assume that the only available published
estimates of supplemental US and MRI screening sensitivity and
specificity in this group were approximately equal to those for the
relevant population (mammogram-negative women of screening
age). The estimate of US screening performance was taken from a
published systematic review and meta-analysis [17]. This review
included studies only in the high-risk population but was the
only available source that provided a quantitative synthesis of
sensitivity and specificity for US. For MRI, data from an ongoing
trial in a high-risk population of women in this area (Vreemann
et al., personal communication, 2015) were used to inform the
MRI screening performance parameters in the model.

The same approach was taken to calculate the screening
performance for US and MRI. Reported cancer detection rates from
each source were used to calculate the odds ratio for detecting
cancer with US, MRI, and mammography compared with mammog-
raphy alone. The estimated odds ratio was assumed to be constant
across tumor size. Equation 4 (see Table 2) shows the case for MRI:

ORMRI¼ c:d:r:mammo,MRI=ð1000�c:d:r:mammo,MRIÞ
c:d:r:mammo=ð1000�c:d:r:mammoÞ

: ð4Þ

The cancer detection rate with mammography and MRI
reported by Vreemann et al. (personal communication, 2015)
was 12.14 per 1000 examinations, whereas the cancer detection
rate for mammography alone in this group was 4.2 per 1000
examinations [17]. The estimated odds ratio was 2.91, which was
then applied to the tumor size and breast density– specific odds
of a cancer being detected with mammography alone. These odds
can then be converted back to probabilities for use in the
simulation of individual screening events using the formula in
Equation 5 (see Table 2):

SenX,VDG,MRI¼
SenX,VDG= 1�SenX,VDG

� ��ORMRI

1þ SenX,VDG= 1�SenX,VDG
� ��ORMRI

� � : ð5Þ
US and MRI Recall Rate. The recall rate for US was 98 per 1000
examinations and for MRI it was 41 per 1000 examinations [17]. It
was assumed that the biopsy rate for recalls is the same as the
current NBSP, which was informed by the opinion of three
experts (radiologists) in the ASSURE project [4].
Breast Cancer Natural History with Screening
Breast cancer natural history was represented using a continuous
time and tumor size growth model to allow variation in growth
rates. The natural history of breast cancer was defined by
estimating the incidence of breast cancer with screening and
the growth of tumors once detected.
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Breast cancer incidence. The occurrence of breast cancer for an
individual was assumed equal to the lifetime risk score of that
individual, estimated using the Tyrer-Cuzick algorithm [18]. This
assumption implies that the risk model used in the stratification
process is perfectly calibrated to the population. The age of breast
cancer incidence (malignant neoplasm of breast [International
Classification of Diseases, Ninth Revision, C50] and carcinoma in situ
of breast [International Classification of Diseases, Ninth Revision, D05]),
conditional on lifetime occurrence, was then estimated for each
individual on the basis of the Office of National Statistics cancer
registry data [19] (see Appendix 2 in Supplemental Materials found
at http://dx.doi.org/10.1016/j.jval.2017.04.012).

Breast Cancer Growth. A continuous time model was used to
estimate the growth of tumors of the breast (see Appendix 3 in
Supplemental Materials found at http://dx.doi.org/10.1016/j.jval.
2017.04.012). Four candidate growth models [13,20–22] were
identified from a systematic review of economic evaluations of
NBSPs [5]. Each identified growth model used a unique combina-
tion of parameters, which meant a formal quantitative synthesis
was not appropriate, and the natural history model published by
Weedon-Fekjaer et al. [13] was judged to be the best available
because of the use of a continuous growth model, the high
quality of the reporting, and the relatively close match in location
(Europe) and time period to the current UK setting. The natural
history model parameterization was described by two steps. The
parameter estimates are presented in Table 3.

Step 1. Equations 6 and 7 (see Table 2) show the logistic tumor
growth function (using tumor volume V mm3, diameter s mm,
time in years t, and growth rate k, and assuming a spherical
shape as is in Weedon-Fekjaer et al. [13]):

V tð Þ¼ Vmax

1þ Vmax
Vcell

� �0:25
�1

� �
e�0:25kt

� 	 , ð6Þ

sðtÞ¼2 VðtÞ= 4
3
π

� �� �1=3

: ð7Þ

Step 2. Equations 8 and 9 (see Table 2) show the extension to
individual growth rates (mixed model):

Vi tð Þ¼
Vmax

1þ Vmax
Vcell

� �0:25
�1

� �
e�0:25kit

� 	 , ð8Þ

si tð Þ¼2 Vi tð Þ=
4
3
π

� �� �1=3

: ð9Þ

Diagnosis and Treatment Process
After a screen-detected cancer, the model captured the diagnos-
tic and subsequent treatment process. Three types of tumors for
breast cancer were reflected in the model: invasive, non- or
micro-invasive, and advanced.

Invasive Tumors. For invasive cancers, the Nottingham Prog-
nostic Index (NPI), a commonly used and validated classification
system, was used to group the diagnosed tumors into three
prognostic groups [23,24]. A systematic review was used to
identify reported survival for NPI-defined subgroups (see
Appendix 4 in Supplemental Materials found at http://dx.doi.
org/10.1016/j.jval.2017.04.012). A meta-regression analysis
showed that there was substantial heterogeneity between the
studies that was driven by the date on which the data were
collected and a trend for improved survival over time, which
implied that it was more appropriate to select the most recent
data to inform the probability of NPI group membership condi-
tional on invasive tumor size category and survival for women
diagnosed with breast cancer (see Table 2). Allocation of invasive
cancer cases to NPI categories used the probability of NPI group
membership conditional on tumor size category, as reported in
Kollias et al. [25], which was the only study identified reporting
the required cross tabulation of size and NPI category. The
required probabilities of NPI subgroup membership were calcu-
lated using the reported cross tabulation of size category by NPI
category (see Appendix 3 in Supplemental Materials).

Non- or Micro-Invasive Tumors. Three simplifying assumptions
were made to capture the impact of detecting non- or micro-
invasive tumors, defined as “ductal carcinoma in situ (DCIS).” A
vanishingly small proportion of DCIS tumors will not be screen-
detected and, therefore, it was assumed that only screen-
detected cancers may be assigned to the DCIS category. The
proportion of screen-detected DCIS cancers was assumed to be
constant regardless of the screening interval. This assumption
was supported by the proportions of DCIS in screen-detected
cancers in the UK NBSP (3-year interval; 20.3%) [26] compared
with the Netherlands NBSP (2-year interval; 20.9%) [27] being
similar. Survival for DCIS diagnosed and treated patients was
assumed to be the same as for the general population, in line
with an audit of UK screen-detected breast cancers [26]. On this
basis, any screen-detected cancer was given a probability of 0.203
of being assigned to the DCIS category. DCIS cancer cases have
the same all-cause survival as the general population.

Advanced Tumors. A small proportion of all breast cancers will
present at the advanced stage with distant metastases defined as
being stage IV in the Tumor, Node, Metastasis classification
system [28]. The probability of a breast cancer of a given size
presenting at an advanced stage was assumed not to be related to
the type of screening modality or interval. The source for the
probabilities of advanced breast cancer at diagnosis conditional
on tumor size was taken from the National Health Service audit
of screen-detected breast cancers (2013) (see Appendix 3 in
Supplemental Materials). Estimates of 10-year survival for
patients with advanced breast cancer were obtained from a
meta-analysis of registries in six countries [29].

Survival, Invasive (Nonadvanced) Breast Cancer
For women without a diagnosis of breast cancer, survival was taken
from published population life tables [30], and the parameters of a
Weibull survival distribution were estimated. Simulation of indi-
vidual age of mortality was achieved by inverting the Weibull
cumulative distribution function and taking a random draw from
the uniform (0,1) distribution using Equation 10 (see Table 2):

Tm¼ logðUÞ
λ

� �1=υ

: ð10Þ

The observed effect of data collection date on survival from
the meta-regression (manuscript under review) meant that the
most appropriate estimate of survival for women with a diag-
nosis of breast cancer was the most up-to-date estimate (see
Fong et al. [31]). The parameters of four functional forms for the
baseline hazard function were estimated in a regression-based
survival analysis: exponential, Weibull, lognormal, and log-
logistic. The exponential model was selected on the basis of the
Akaike information criterion (a measure of model fit) and visual
inspection of Cox-Snell residuals (see Appendix 4 in
Supplemental Materials). Estimated coefficients (Table 3) from
the parametric survival model were used to simulate a survival
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Table 4 – Base-case deterministic analyses of example stratified NBSP.

Screening
program

QALYs
(3.5% discount

rate)

Cost (£, 2015;
3.5% discount

rate)

ICER vs.

No screening
(3.5% discount

rate)

UK NBSP
(3.5% discount

rate)

No screening
(1.5% health,
3.5% costs)

UK NBSP
(1.5% health,
3.5% costs)

No screening* 17.6919 246 NA NA NA NA
Current UK

NBSP
17.7095 654 £23,197 NA £11,343 NA

Risk 1† 17.7119 694 £22,413 £16,689 £11,363 £11,565
Risk 2‡ 17.7181 858 £23,435 £23,924 £11,425 £11,592
Masking§ 17.7102 809 £30,772 £212,947 £15,065 £105,412
Risk 1 and

masking||
17.7124 870 £30,532 £75,254 £14,707 £33,199

ICER, incremental cost-effectiveness ratio; MRI, magnetic resonance imaging; NA, not applicable; NBSP, national breast screening program;
NICE, National Institute for Health and Care Excellence; VDG, Volpara Density Group.
* No mammography used in the population for screening purposes and all cancers would present with clinical signs or symptoms.
† Risk-based stratification with three strata as defined by a published risk algorithm [16] for 10-y risks of breast cancer and associated
screening intervals: o3.5% with 3-yearly screening interval; 3.5%–8% with 2-yearly screening interval; 48% with annual screening interval.

‡ Risk-based stratification with three strata defined by dividing the population into thirds on the basis of risk (tertiles): lowest risk tertile with
3-yearly screening interval; middle tertile with 2-yearly screening interval; highest risk tertile with annual screening interval.

§ Current UK NBSP with supplemental ultrasound offered to women with high breast density. Women with both high breast density and high
risk of breast cancer were offered supplemental MRI instead of ultrasound. High breast density was defined using VDG3 and VDG4 and high
risk was defined as 48% 10-y risk of breast cancer on the basis of the NICE definition of high risk (30% lifetime risk E 8% 10-y risk) [46].

|| Risk-based stratification (with three strata as defined by a published risk algorithm [16] for 10-y risk of breast cancer and associated screening
intervals: o3.5% with 3-yearly screening interval; 3.5%–8% with 2-yearly screening interval; 48% with annual screening interval) and current
UK NBSP with supplemental ultrasound offered to women with high breast density. Women with both high breast density and high risk of
breast cancer were offered supplemental MRI instead of ultrasound. High breast density was defined using VDG3 and VDG4 and high risk was
defined as 48% 10-y risk of breast cancer.
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time by inverting the survival function and use of a random
number generator using Equation 11 (see Table 2):

Tc¼
� log U 0,1ð Þð Þ

γ
: ð11Þ

Fong et al. [31] presented data for women aged 50 to 65 years,
including both screen-detected and interval cancers, and it was
necessary to age-adjust these data for women older than
65 years. A further adjustment was made to account for lead
time in screen-detected cancers by reversing the process of lead
time bias correction as described in Duffy et al. [32] to introduce
lead time for screen-detected cancers. Mortality from breast
cancer for screen-detected cancers was, therefore, calculated
from the simulated time the cancer would have presented
clinically rather than the time of screen detection. Standard
all-cause mortality was applied in the period between screen
detection and clinical presentation. This adjustment implied
that an assumption was made that there was no important
short-term negative effect on mortality from treatment.
It was further assumed that breast cancer did not affect survival
beyond 10 years after clinical presentation (hazard rate returns
to the population rate). Overall survival time post–breast
cancer diagnosis Toð Þ was calculated using Equation 12
(see Table 2):

If TmrTdð Þ, To¼ Tm,
else To¼TcþTd: ð12Þ

Quality-Adjusted Life-Years
QALYs were used to capture the consequence of each screening
program. In accordance with standard practice, life-years were
adjusted for average health-related quality of life at a given age
[33]. Estimates for these age-specific average utility weights were
taken from the study by Ara and Brazier [34]. The multiplicative
method was used to combine health state utility weights and
age-specific average utility weights [33]. Utility weights were
identified by updating a published systematic review for breast
cancer health states [35]. An identical search strategy limited to
the period January 2010 to October 2015 yielded 11 additional
studies. Consistent with the suggestions made by Peasgood et al.
[35], heterogeneity in the studies meant that meta-analysis of
utility weights was inappropriate. Therefore, relevant utility
weights were identified from studies that most closely represented
the health states in the model structure. No studies were identified
that defined breast cancer health states for specific NPI categories.
Therefore, the selected utility weights (see Table 2) were taken from
Lidgren et al. [36] and were used for early disease and advanced
(distant metastases) disease, for the first year after diagnosis and
subsequent years. These selected utility weights were assumed to
also account for the impact of disutility from treatment, which is in
keeping with the original source for these data.
Resource Use and Costs
In accordance with the assumed health care system perspective,
resource use and associated costs accruing to the health services
were used as model input parameters (see Table 2). Initial
treatment and follow-up health care costs were included.
Costs associated with treatment for breast cancer cases of DCIS,
NPI categories 1 to 3, and advanced cancer were taken from
published studies [15,24,37]. These estimates from 1992
were inflated to 2015 prices using the retail price index
produced by the Office of National Statistics [38]. Supplementary
imaging (US and MRI) costs were taken from the National
Health Service schedule of reference costs (2013/2014) from the
categories diagnostic whole breast ultrasound (no complications)
and diagnostic breast MRI (no complications). Mammo-
graphy costs were sourced from Madan et al. [15] and reflected
estimates from a screening program. An estimate of the
cost of administering risk and breast density–based stratification



Fig. 1 – Cost-effectiveness acceptability curve for all stratified
NBSPs and comparators. NBSP, national breast screening
program.
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was made on the basis of experience from the Predicting Risk of
Cancer at Screening (PROCAS) study [5]. The average cost per
woman was estimated as £10.57 (see Appendix 1 in Supplemental
Materials for further details).

Data Analysis

The base-case analysis calculated the total costs and QALYs for a
sample of 100 million women over a lifetime from the relevant
age (in years) reflecting the start of each of the four specified
stratified breast screening programs, current UK NBSP, and no
screening. Appendix 5 in Supplemental Materials found at http://
dx.doi.org/10.1016/j.jval.2017.04.012 shows how using a sample of
100 million women should be sufficient to be confident that the
model had sufficiently converged.

Incremental analysis was performed by comparing each
stratified NBSP with 1) current NBSP and 2) no screening. In
addition, a full incremental analysis was performed. All costs and
QALYs were discounted at a rate of 3.5%.

One-way sensitivity analyses were used to explore the impact
of selected input parameters (see Appendix 6 in Supplemental
Materials found at http://dx.doi.org/10.1016/j.jval.2017.04.012). In
addition, the National Institute for Health and Care Excellence
recommends that a relevant sensitivity analysis for interventions
such as screening with long-term outcomes is to apply a 1.5%
discount rate for health outcomes and a 3.5% discount rate for
costs [39]. In common with previously published economic
evaluations in screening, a no discounting scenario was also
estimated. Probabilistic sensitivity analysis (PSA) [40] was per-
formed to quantify the effect of the joint uncertainty (see
Appendix 7 in Supplemental Materials found at http://dx.doi.
org/10.1016/j.jval.2017.04.012) using a generalized additive
model [41].
Fig. 2 – Cost-effectiveness acceptability frontier for all
stratified NBSPs and comparators. NBSP, national breast
screening program.
Results

Table 4 presents the results of the base-case analysis for a risk-
based stratified NBSP (using risk 1 or risk 2), a masking-based
stratified NBSP (masking), and a risk and masking–based strati-
fied NBSP (risk 1 and masking). The risk 1 and risk 2 stratified
NBSPs were relatively cost-effective when compared with the
current UK NBSP. The masking stratified NBSP does not appear to
be a cost-effective alternative when compared with the current
UK NBSP. Using an alternative discounting rate of 3.5% for costs
and 1.5% for benefits resulted in relatively lower estimated
incremental cost-effectiveness ratios (ICERs) for all stratified
NBSPs compared with the UK NBSP. When compared with no
screening, all screening programs may be considered cost-
effective. A full incremental analysis is available in Appendix 7
in Supplemental Materials. This shows that masking and risk 1
and masking were dominated by the next alternative (current
NBSP and risk 1 stratified NBSP, respectively). The ICERs for the
remaining comparisons were £23,197 per QALY for the current
NBSP compared with no screening, £16,689 per QALY for risk 1
stratified NBSP compared with masking, and £26,749 for risk 2
stratified NBSP compared with masking and risk 1 stratified NBSP.

Sensitivity Analyses

To examine the decision between using the suggested stratified
NBSP and the current UK NBSP, a cost-effectiveness acceptability
curve is presented in Figure 1 using the results of the PSA. Figure 2
shows the associated cost-effectiveness acceptability frontier, which
suggests that the current UK NBSP would be selected as the preferred
program with a threshold of cost per QALY gained of less than
£20,000 per QALY gained, whereas the risk 2 stratified NBSP would be
chosen at higher thresholds of cost per QALY gained.
One-way sensitivity analysis (see Appendix 6 in Supplemental
Materials) showed that the reported total costs, total QALYs, and
ICERs were sensitive to natural history parameter values (α2
and mean tumor size at clinical detection) and screening per-
formance of mammography β2

� �
. ICERs for stratified programs

were moderately sensitive to the cost of stratification although
costs would need to be several times the base-case value for
ICERs to increase beyond a threshold of £30,000 per QALY. In all
alternative programs, total costs were sensitive to the treatment
cost parameters; varying these parameters, however, did not
greatly change the ICERs compared with the base case. Estimates
of total QALYs were sensitive to the utility weights for cancer
states; varying utility weights moderately altered the ICERs of
stratified programs compared with the NBSP. The results were
relatively insensitive (within the ranges tested) to the probability
of recall, costs of MRI, the relative sensitivity of mammography
by VDG group, and US/MRI additional cancer detection rate.
Discussion

This study used an early model-based CEA to generate estimates
of the relative costs and consequences of four exemplar stratified
NBSPs compared with no screening and current practice in the
UK NBSP. The risk 1 and risk 2 stratified NBSPs compared with the
current UK NBSP were deemed to be cost-effective uses of health
care resources relative to a threshold range of £20,000 to 30,000
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per QALY gained. The ICERs for the current UK NBSP compared
with no screening were somewhat higher than previous analyses
[15,42] but were very similar to the most recently published
study [43]. Results were not directly comparable with previous
model-based analyses of stratified screening [6,7] because of
differences in modeling strategy and also in comparators.

The masking stratified NBSP was relatively the less cost-
effective strategy. Combining the two stratification approaches
using risk 1 and masking simultaneously resulted in modest
QALY gain when compared with either risk 1 or masking
stratified NBSP. The modest gains from masking-based strategies
could be due to increased overdiagnosis overwhelming the
potential QALY gains from early detection of a tumor. Over-
diagnosis is a commonly cited problem with NBSP [1]. Over-
diagnosis suggests that NBSPs are too effective at detecting small,
and slow growing, tumors that would not affect a woman’s
health within her lifetime if left undetected. Follow-up proce-
dures such as biopsies and treatment for such overdiagnosed
cases are expensive and may cause harm [44].

The interpretation of the cost-effectiveness results for strati-
fied breast screening was strongly influenced by the choice of
discount rate. The choice of discount rate is not a simple
technical question and the preferred discounting procedure for
producing cost-effectiveness results for economic evaluations in
health is a contested issue [39]. Decision makers should consider
which discounting scenario best reflects the values and prefer-
ences of those for whom they are making a decision.

This early economic analysis was based on the best available
data sourced from a combination of rapid reviews, systematic
reviews, and analysis of data from two key published prospective
studies [31,45]. Key data gaps were the relative sensitivity of
mammography by density given the tumor size, the detection rate
of supplemental ultrasound, and the recall rate and biopsy rate.
Most importantly, the lack of randomized trials, or sufficiently long
robust observational studies, meant that there were no direct
estimates of the effect of supplemental screening modalities on
mortality or other long-term outcomes. Robust, up-to-date data on
the cost of treating women with breast cancer were not available.
This meant that it was necessary to rely on estimates from a now-
dated study for the cost of treatment stratified by a prognostic
indicator [37]. In addition, on the advice of clinical experts, the
implications of screening on use of different targeted treatment
options for human epidermal receptor 2 or estrogen receptor status
were not included in this model. These important uncertainties,
because of the lack of robust data for several key parameters,
suggest that the results of this model-based CEA should be treated
as indicative. The focus should be on the model structure itself and
on the identified key drivers of relative cost-effectiveness. The most
important drivers of cost-effectiveness after the discount rate were
the natural history parameters, cost of stratification, and mammo-
graphic sensitivity parameters. Future research should be directed
at improving the robustness of these data. Some one-way sensitivity
analysis results may appear inconsistent (US and MRI cancer
detection rates) and this may be due to the Monte-Carlo error for
alternatives in which the differences between strategies were small
or the result of nonlinearity in the model.

Decision makers using the results of this DES model-based CEA
must recognize the inherent limitations of mathematical models
of disease natural history and screening that may introduce
structural uncertainty. Using a DES was in line with published
models in cancer screening [46]. DES allowed the influence of
individual patient characteristics to be captured, the flexibility for
cancer growth to be modeled as a continuous process, and the use
of prognostic categories to group treatment options. It may be that
modeling choices, such as how cancer growth rates can vary
between individuals, were influential in driving the relative cost-
effectiveness of a particular NBSP. No formal external validation or
calibration of this early decision-analytic model was conducted.
External validation against more extensive clinical trial or obser-
vational data should be a goal of any future investigation of the
cost-effectiveness of stratified NBSP.

A key important assumption, in the absence of data to prove
otherwise, was that the risk model used in the stratification
process was perfectly calibrated to the population. This “struc-
tural” uncertainty is not reflected in the results of the PSA and
therefore users must exercise judgment when interpreting the
results. A further limitation to be aware of is that the use of
regression models within a PSA is a new and developing method-
ology and therefore these results should perhaps be treated with
some caution. Structural uncertainty may be best addressed by
planning external validation studies in future research relating to
all aspects of the economic model, including the risk models used
in stratification and the natural history models of breast cancer.
External validation studies of the risk model to be used in a
stratified NBSP are essential if there is reason to believe calibra-
tion may be poor, which also requires consensus to be reached on
the appropriate risk categories to use in practice. Previous
experience in a research context suggests that embedding strat-
ification in the existing NBSP is feasible [5], but no data exist on
the effects of stratification on screening uptake and this is an
important topic for further research.
Conclusions

This early model-based CEA presents indicative results that sug-
gest that a risk stratified NBSP is potentially a cost-effective use of
health care resources when compared with the current UK NBSP.
The proposed model structure will be a key resource as more data
become available to support the introduction of stratified NBSP
such as the sensitivity and effectiveness of the new screening
modalities, the effect of risk communication strategies on NBSP
uptake, and the cost of newer treatments for breast cancer. The
choice of discount rate will be crucial in interpreting the results.
A prespecified external validation analysis should be conducted
alongside any more definitive economic evaluation.
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